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1.0    INTRODUCTION 

Space-Time Adaptive Processing (STAP) algorithms have been the subject of intense interest for several 

years. This interest occurs primarily because the algorithms offer significant improvement in target detection 

capability for an array antenna in the presence of strong interference. The auto correlation of the interference 

environment allows the algorithm to accurately estimate and reject the interference, thereby enhancing the 

desired signal. 

The strength of STAP is found through incorporation of the interference estimate. However, it is also one 

of the biggest drawbacks in terms of practical application. Reed [1] has shown the sample support required to 

estimate the interference covariance matrix for Sample Matrix Inversion (SMI) techniques is approximately 

two times the Degrees Of Freedom (DOF) used in the algorithm, or 2JVDOF- Using this rule, performance 

within 3 dB of optimal Signal-to-Interference-plus-Noise Ratio (SINR) is obtained. Optimum is defined here 

as the output SINR of the algorithm given a known interference covariance matrix. 

A fully adaptive STAP algorithm uses all available DOF, or MN, where M and N respectively represent 

the number of pulses within a Coherent Processing Interval (CPI) and the number of antenna elements. 

The required sample support predicted by Reed's rule is then 2MN vectors. Since the number of range 

bins from which sample support is obtained is typically much less than 2MJV, secondary data support is 

a problem. Limited data support drives the need for reduced dimension STAP algorithms; reducing iVboF 

generates a corresponding decrease in required sample support. The goal of these algorithms has been to 

obtain maximized SINR performance with small JVDOF and correspondingly small secondary data support. 

In achieving this goal, some algorithms have deviated from the SMI class. One interesting approach is the 

Cross Spectral Metric (CSM) algorithm developed by Goldstein and Reed [5]. 

Although Goldstein and Reed assume secondary data support greater than MN [6], operation of the 

algorithm is shown in this report to be experimentally possible for secondary data set sizes below this value. 

However, operation in this region does result in a singular covariance matrix and algorithm performance 

correspondingly suffers. The report examines the operation of the CSM algorithm with secondary data set 

sizes on the order of MN. The results show the algorithm is capable of operating with a singular covariance 

matrix through an appropriate choice of JVDOF • Best performance occurs when JVDOF equals the interference 

subspace dimension. This result is reaffirmed through a mathematical analysis using an eigenbeam model 

originally used for SMI techniques [2-4]. Furthermore, the analysis introduces a method to mitigate the 

effects of insufficient sample support on the CSM algorithm when JVDOF is chosen inappropriately. 



1.1 Notation 

Commonly accepted mathematical notation is used throughout the report. Matrices are represented by upper 

case bold letters, such as R and A. Vectors use lower case bold letters, for example e or x- The superscript 
T and H operators denote the transpose and Hermitian operators respectively. Vertical bars, |-|, represent 

the absolute value operator. The expected value operator is denoted E {•}. The N x N identity matrix is 

IN. Estimated parameters are denoted with a "above the variable, e.g. A might be the true eigenvalue and 

A the estimated eigenvalue. 

The simulated antenna array consists of N elements arranged linearly with equal spacing. The adaptive 

processing is performed within a coherent processing interval (CPI) of M pulses. The term noise is defined 

to include all thermal effects and any other sources of white, uncorrelated noise. Interference is defined to 

include the effects of all correlated sources. Any targets placed in the data are discrete representations of 

constant amplitude. 

1.2 Report Overview 

A portion of the simulation results presented in this report are a result of thesis work [7] conducted by 

the author while at the Air Force Institute of Technology. The work was supported by Capt Bill Melvin, 

formerly of Rome Laboratory now known as the Air Force Research Laboratory (AFRL). The purpose of 

this report is to expand on the results of [7]. 

The organization of the report is as follows. The Cross Spectral Metric (CSM) algorithm is reviewed and 

discussed in Section 2.0. The concept of secondary data support for covariance matrix estimation is also 

briefly reviewed here. Section 3.0 discusses the simulation results. An analysis of these results can be found 

in Section 4.0. Section 5.0 gives a set of conclusions that can be drawn from this work. 



2.0    THE CSM ALGORITHM 

The CSM algorithm as derived by Goldstein [5] is a transformation of the direct form STAP problem into 

a Generalized Sidelobe Canceller (GSC) architecture. A block diagram of the algorithm is shown in Fig. 1. 

The purpose of this section is not to present the entire algorithm development, but merely to highlight its 

important features. Although the algorithm is discussed in detail, it is left to the reader to reference [5,6,8] 

and obtain a thorough understanding of the derivation. 

The CSM algorithm, as most algorithms are, is developed entirely for the case of a known covariance 

matrix R. In practice, the estimated covariance R is substituted for R. No optimality is claimed for the 

case of estimated covariance. The purpose of this report is to evaluate algorithm performance in the case of 

estimated covariance. 

Figure 1 illustrates a two step process. An estimate d of the desired signal along with any interference 

and noise is generated in the upper branch. The interference signal estimate j/z in the lower branch is then 

subtracted from d. Assuming yz is an accurate estimate of the interference, the problem is then reduced to 

the standard case of detecting a target in uncorrelated noise. 

The incoming data for the range gate of interest I is defined as x, the space-time snapshot [9]. The range 

gate dependence is implicit. The incoming snap-shot is always assumed to correspond to the range gate of 

interest unless an explicit subscript is added. The column vector x istne concatenation of the complex radar 

returns from each of the N antenna elements for M pulses. 

The response of the filter in the upper branch of Fig. 1 is maximized in the direction of the desired signal. 

The transfer function is the normalized spatio-temporal steering vector1 s, allowing the output of the upper 

branch to be written as 

d = s"X. (1) 

The lower branch of the block diagram shows a vector b equal to Bx, where B is a blocking matrix defined 

such that Bs = 0 and is of dimension (MN — 1) x MN. The covariance matrix is defined as [9] 

R = £{xxH}. (2) 

Using this definition, the covariance matrix for b is 

Rb = £{bbH} = BRBH. (3) 

The eigenvalue decomposition of this matrix is 

Rb = UAUH, (4) 

1See [9] for a derivation of spatial, temporal, and spatio-temporal steering vectors. 



Dimension Reduction 

Figure 1: CSM Algorithm Block Diagram. 

where U is the matrix of eigenvectors and A is the diagonal matrix of eigenvalues. Mathematically these 

can be written in terms of the eigenvectors and eigenvalues themselves, i.e. 

U   = Vl      V2 VMN-\ ] 
A   =   diag (AI,    A2,    ...,    \MN-I) (5) 

The dimension of the algorithm is reduced through the (MN - 1) x ATDOF matrix U, where the columns of 

this matrix are composed of iVDoF eigenvectors from the eigenvalue decomposition of Rb- These eigenvectors 

are chosen according to the Cross Spectral Metric (CSM) [6], 

.H 
"i^bd 

VXi 
(6) 

where rhd is the cross correlation between d and b, or £{bd*} = BRs. Only the ATDOF eigenvectors with 

the largest CSM are included in U, resulting in optimum SINR for this number of DOF. If we assume the 

columns of U and A are ordered according to the CSM, then the following equations hold: 

U    -    U(:,1:JVDOF) 

•A-JVDOF    =    dias(Ai,    A2,    ...,    AjvDOFj • 

MATLAB® notation has been used to express these equations. 

(7) 



Notice that an eigenvalue equal to zero causes the CSM of Eqn. (6) to be undefined. One should note 

that all SMI techniques are also undefined for a singular covariance matrix since this matrix type is non- 

invertible. Although unlikely in a real radar environment due to the effects of thermal noise, the sample 

covariance matrix estimate is singular when operating with sample support less than MN. Non-singularity 

can be forced by introducing more white noise into the system through the technique of diagonal loading. 

This technique is discussed in more detail later. 

Disregarding the conditioning problem for the moment, the output of the lower branch is easily written 

as 

ym = w?UHBX, (8) 

where wz is the reduced dimension adaptive filter. This filter is given by [5] 

Wz = A^OFWHrbd, (9) 

where A;vDOP 
1S tne diagonal matrix of eigenvalues corresponding to the iVboF eigenvectors used to form U. 

The output of the entire reduced dimension algorithm can then be written as 

yr = wH
X = d - yz = (s - BHUA^OFUHrbd)HX. (10) 

With this form, the maximum output SINR of the algorithm becomes 

,   „   ,2 a2£, [s-BHUA.7L„Unr*>dH 

W    V 
SINR = 

(s-B"WA^0pWHrbd)
Hv 

(11) 
w-Rw      (s_BffWA-iopWHrb^R(s_BHWA-iop^rbd)' 

where a2 is the noise power per element, £t is the target SNR per element per pulse, and v is the un-normalized 

space-time steering vector. The steering vector is used because we are interested in the maximum output 

SINR. 

It should be noted that in the case of estimated covariance, R in Eqn. (11) is not replaced by R. The 

covariance matrix estimate is substituted in the weight vector, i.e. li and AJVDOP become tl and AWDOF » 

each respectively composed of the eigenvectors and eigenvalues of Rb- 

2.1    Covariance Matrix Estimation 

The covariance matrix is not known in a real radar environment and must be estimated from the data 

available. The matrices Ü and Ä^DOP are then composed from this estimate. The full dimension covariance 

matrix is estimated through the use of the Maximum Likelihood (ML) estimator 

l+K/2 

Ri = -^    £    XiX?foTi*l, (12) 
i=l-K/2 



where I is the range gate of interest, K is the number of secondary data vectors to be used in the estimate, and 

Xi is the space-time snapshot or data vector corresponding to the ith range gate. As mentioned previously, 

Reed's rule for SMI techniques states performance within 3 dB of optimal is obtained with K w 2iVDoF [1]. 

2.2    Generating Data for Performance Analysis 

Examining the SINR performance of the CSM algorithm with respect to K was done by generating artificial 

secondary data. Covariance matrices were generated using models found in Jaffer [10], Ward [9], and Ro- 

man [11] to include the effects of clutter, noise, and jammers. The artificial secondary data was generated 

through the use of the Cholesky decomposition of the desired R, 

R = QHQ, (13) 

as a coloring filter 

X = Qffx, (14) 

where x is complex Gaussian with zero mean, unit variance, and white [12]. The definition of the Cholesky 

decomposition used here is consistent with MATLAB®. 



3.0 SAMPLE SUPPORT AND THE CSM ALGORITHM 

The Simulation results presented here use two different implementations of the covariance matrix models 

introduced by Jaffer [10] and contained also by Ward [9] in MATLAB® notation. Scenario 1 is the result of 

an implementation by the author. Scenarios 2 and 3 use the physical model developed by SSC corporation, 

fully described in an earlier Rome Laboratory report [11]. 

3.1 Simulation Procedures 

Monte Carlo simulations were used to generate the SINR performance results presented in this report. A 

new set of white, unit variance data as discussed in Section 2.2 was generated for each trial. The number of 

trials was generally sufficient to keep the ratio of the mean to the standard deviation of the output SINR on 

the order of 10 dB. However, this ratio could not be kept when the mean SINR dropped too low, as occurs 

at the dip exhibited by some SINR curves plotted as a function of sample support size K. Optimum SINR 

is defined here as the algorithm's output SINR using the known covariance matrix with the same iVboF- 

The subspace structure of the covariance matrix is characterized by its eigenvalues. For the purposes of 

this report, 

eig(R) = interference subspace eigenvalues + noise subspace eigenvalues, (15) 

where the noise subspace is characterized by eigenvalues of equal magnitude and the interference subspace 

is defined to be all others. The number of eigenvalues in the noise subspace is referred to as its dimension. 

Similarly, the number of eigenvalues within the interference subspace is its dimension. 

3.2 Simulation Results 

Figure 2 shows the subspace characteristics of interference scenario 1 for the known covariance matrix. Using 

parameters from [9], the first covariance matrix as described in Table 1 corresponds to a clutter ridge slope 

ß equal to 1. This value produces a sharp transition from the interference subspace to the noise subspace 

due to the ideal antenna model, zero crab angle, no channel mismatch/errors, etc. These non-ideal factors 

all serve to blur the transition from interference to noise subspace. The parameters a2 and £t have been set 

to unity for all simulations. 

The 18 elements and 18 pulses yield a maximum space-time product of MN = 324 DOF. The plot of the 

CSM shows a clear transition from the interference subspace to the noise subspace after 65 eigenvectors. The 

number of eigenvalues corresponding to this transition is referred as the interference subspace dimension. 

This figure further shows an interesting and valuable feature of the CSM algorithm. The eigenvalues 

are plotted in the order of descending CSM magnitude. The relationship between the CSM magnitude and 
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Figure 3: Optimum SINR Curve Versus N^OF for 
scenario 1. 

the eigenvalue magnitude shows the largest eigenvalue is one of the last principle cross spectral components 

chosen. This is in direct conflict with the method of principle components, which chooses according to the 

largest eigenvalue. 

The first step in determining the impact of varying sample support size K on the CSM algorithm is to find 

the performance of the algorithm with the known covariance matrix for each scenario. Figure 3 shows the 

increase in SINR as iVDOF increases. The Matched Filter (MF) performance of 25.1 dB SINR, determined 

from the space-time product MN, is reached with as few as 65 DOF compared to the full dimensional 

adaptivity of MN = 324. SINR roll-off occurs for iVDOF below 65 because there are not enough DOF 

available to counter the interference. The figure provides the optimum SINR, allowing us to calculate the 

SINR Loss (£SINR) due to insufficient K, i.e. limited sample support, in estimating the covariance matrix 

for each scenario. 

The second scenario uses the covariance matrix generated by the physical model [11] data generation 

method contained within the Multi-Channel Signal Processing System (MCSPS) designed and constructed 

by AFRL/SNRT. The space-time product was 32: 8 elements and 4 pulses. The effects of two jammers, 

clutter, and noise are included. Table 2 gives all of the relevant model parameters. Figure 4 shows large 

eigenvalues do not necessarily correspond to high CSM values. As a matter of fact, the largest eigenvalue 

shown in this plot is the 29th highest CSM value, and hence the 29t'1 DOF to be chosen for maximum SINR 

(when the covariance matrix is known). The trends shown in the figures corresponding to this scenario 

confirm the result found for the first scenario in that the DOF needed to reach MF performance is typically 

much less than the space-time product. Figures 4 and 5 illustrate the subspace characteristics of this scenario 

8 
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(the interference and noise subspace dimensions). 

Monte Carlo simulations were used to generate the SINR versus sample support size K curves shown 

in Fig. 6 through 8 with iVDOF as a parameter for interference scenario 1. Figure 6 shows curves with 

iVboF < 65 (below the interference subspace dimension). As expected, the SINR performance of each curve 

improves as K increases. However, none of the curves exhibit the performance within 3 dB of the MF 

predicted by Reed's rule. In fact, choosing JVDOF < 50 for this covariance matrix results in the curve never 

reaching 3 dB of optimal (the MF). Figure 3 provides the reference necessary to determine the SINR loss. 

Figure 7 shows the simulation results for scenario 1 but now with NDOF above the dimension of the 

interference subspace. Again, the performance of the algorithm is optimum with only 65 DOF, but perfor- 

mance drops rapidly with increasing iVboF- Of particular interest is the observation that the decrease in 

SINR is most dramatic at the sample support size K = MN = 324. The results clearly demonstrate the 

choice of JVDOF is critical to the performance of the CSM algorithm in this scenario. If JVDOF is chosen 

larger than the interference subspace dimension, the performance of the algorithm severely suffers when the 

sample support is close to the space-time product of 324. The performance degradation can be as much as 

18 dB. In Section 4.0, we consider the cause of these significant performance losses. 

Figure 8 shows similar results for interference scenario 2. As surmised, the maximum SINR performance 

was obtained with iVboF equal to the interference subspace dimension. Furthermore, the point of maximum 

SINR loss (the dip) occurs at the new space-time product MN = 32. These results confirm the results of 

scenario 1. 
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4.0 PERFORMANCE ANALYSIS 

In Section 3.0, we noted performance is maximized when iVDOF is equal to the interference subspace dimen- 

sion. This result is simply due to the fact that NDOF corresponds to the number of principal cross spectral 

components of the covariance matrix. Increasing NDOF beyond this value will only add DOF corresponding 

to the noise subspace. It was previously shown in Figs. 3 and 5 that MF performance was obtained with 

•WDOF equal to the interference subspace dimension when using known covariance. 

The more challenging question arising from the research reported here is the cause behind the large drops 

in SINR occurring when secondary data support size is in the vicinity of the space-time product MN and 

JVDOF is greater than the interference subspace dimension. The answer to this interesting question can be 

found through an eigenbeam model of covariance matrix estimation error used by [2-4] and is considered 

next. 

4.1 Covariance Matrix Estimation Error 

The eigenbeam model expresses the overall antenna pattern in terms of a steering vector pattern minus 

eigenbeams. The eigenbeams essentially are antenna patterns formed from the eigenvectors of the covariance 

matrix estimate. We formulate the model for the fully adaptive case using the specification of the standard 

Sample Matrix Inversion (SMI) algorithm [1,13], 

WSM/ = R^v (16) 

where R is the sample covariance matrix obtained from the Maximum Likelihood (ML) estimator and v is 

the space-time steering vector. 

The eigenbeam model is generated by replacing the sample covariance matrix with its eigenvalue/eigenvector 

decomposition. We deviate slightly from the notation of the previous section on the CSM algorithm and use 

ÜÄÜ^ to denote the eigenvalue decomposition of R, where U denotes the unitary matrix of eigenvectors, i>{ 

is the ith eigenvector, A denotes the diagonal matrix of eigenvalues, and A, is the ith eigenvalue. Substituting 

the decomposition results in 

wsMi = ÜÄ_1ÜHv. (17) 

We have taken advantage of the inversion property of the unitary eigenvector matrices in the above equation. 

11 



We form the eigenbeam model through the following simplifications, 

. ? -i_-. H, wsMi    =   UA    Uflv 
MN  1 

T"*vi v 

^fv+Er^Hv 

MN 

-E 
x=i 

Aj — An (*?v) *< 

Eigenbeam Scaling Factor 

(18) 

(19) 

where ÜÄÜH = R. 

Prom this equation, we see the fully adaptive SMI weight vector is composed of a nonadaptive steering 

vector scaled by the inverse of the smallest eigenvalue minus a weight vector composed of scaled eigenvectors. 

The pattern described by the eigenvector is termed an eigenbeam. Notice the scale factor on the eigenbeams 

consists of the projection of the eigenvector onto the steering vector. Therefore, an eigenvector with a large 

eigenvalue that naturally falls into a steering vector null has little effect on the overall pattern. 

The known covariance case is characterized by eigenvalues in the noise subspace being constant and 

equal to the noise power or variance. Equation (18) illustrates for the known covariance case (where A* == 

Ami„ for all i £ the noise subspace) that the eigenbeams associated with the noise have no impact on the 

overall antenna pattern. The remaining eigenvectors span the interference subspace. 

With limited sample support, the covariance matrix and its eigenvalues axe incorrectly estimated and 

Aj ^ Ämi„ for all i € the noise subspace. These patterns now detract from the desired features of the ideal 

antenna pattern. As shown by [2-4], insufficient sample support2 increases the spread in the eigenvalues 

associated with the noise subspace thereby increasing the scale factor A<~^miB- Smaller secondary data 

support induces greater spread in the eigenvalues and hence these noise eigenbeams have larger impact on 

WSMI- 

insufficient sample support refers to any case where K < oo. 

12 
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Figures 10 through 12 give a graphical interpretation of the eigenvalue spread occurring in the noise 

subspace with four different secondary data support sizes. The subspace structure of the known covariance 

matrix used in these examples is shown in Fig. 9. 

The relationship between the spread in eigenvalues of the noise subspace and secondary data support K 

is illustrated in Fig. 13, where the ratio A'~*Amla is plotted with K as a parameter. The maximum value of 

unity indicates the eigenbeam has a large impact on the overall antenna pattern. A value of zero indicates 

the eigenbeam has no impact on WSMI- Under known covariance, the scale factor is zero for all eigenbeams 

in the noise subspace. 

4.2    Relationship of Estimation Error and CSM 

It is of particular interest that the CSM weight vector can be cast in a similar framework. We previously 

showed in Eqns. 10 and 11 that the weight vector can be written as 

-i     «if. 
w = s-BJTWA^OPW"fbd. (20) 

Through a few minor mathematical manipulations, a form similar to that of the eigenbeam model is obtained: 

iVbop 

w 
1. 

i=l A« 

=   s B £ —r^—iw™ 
(21) 
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Figure 11: Eigenvalue spread in the noise subspace 
with. 2MN secondary data vectors, single realiza- 
tion. 

Figure 12: Eigenvalue spread in the noise subspace 
with 6MN secondary data vectors, single realiza- 
tion. 

w 
! WDOI 

=   —T-B-E 
JVDOF 

t=i   L 

1- 

f A * 

föibdj i>i 

=   ■ - J-B»üüHrbd + J-B» ff ( ^™ ) (*F*w) *I 
Amin ^min ,-=i     \ ■"» / 

iVooP   / 

AminS-B^W    fbd+   53 
Ai-AE (22) 

The notation has changed slightly from the development of the eigenbeam model with respect to the eigen- 

value decomposition, reverting back to that used for the development of the CSM algorithm. The summary 

below assumes the eigenvectors and eigenvalues within the matrices U and A are arranged in order of 

descending CSM magnitude as determined by Eqn. 6. 

ÜÄÜH    =   BRBff = Rb 

U     =      l^!      j>2      ...      I>AfJV-lJ 

A    =    diag \XU    \2,    ... ,    \MN-I) 

Ü   =    U(:,1:JVDOP) 

kNo„    =    Ä(1:JVDOF,1:-1VDOF) (23) 

Now we can view the CSM algorithm with respect to the three terms of Eqn. 22. The first term is the 

scaled nonadaptive steering vector, as in the eigenbeam model. The second term represents a projection of 

the cross correlation vector fbd. Notice this term is unaffected by eigenvalue spread. 
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The third term is reminiscent of the eigenbeam model. Here the beam/filter is scaled according to its 

projection on the cross correlation vector, shown by the term i>?rbd. For this reason, we call the term BHi>i 

a cross spectral beam. This cross spectral beam consists of an eigenvector from the interference covariance 

matrix estimate Rb projected onto the null space of s. 

The cross spectral beam is directly affected by eigenvalue spreading due to poor covariance matrix 

estimation. Under known covariance, the term ( A«~
A

"»'B j is zero when .NDOF is greater than the interference 

subspace dimension and contains eigenvector/eigenvalue pairs from the noise subspace. We have already 

shown the scale factor is near maximum, or unity, when sample support size K is on the order of MN. 

Therefore, this term contributes a large distortion to the overall adaptive pattern. 

Allowing K to fall below MN results in an artificial suppression of the eigenvalue spread due to com- 

putational limitations. By definition, the number of non-zero eigenvalues is the rank of a matrix. When 

K < MN, the rank of the covariance matrix is K and there exist MN - K zero eigenvalues. Therefore, 

there is no spreading and these beams should have no impact on the overall pattern. However, when these 

eigenvalues are calculated from the covariance matrix estimate, they are not set equal to zero due to the 

limitations of the computer. These beams still impact the overall antenna pattern but with an artificially 

suppressed scale factor. This suppression reduces the impact of the cross spectral beams resulting in an 

increase in output SINR. These observations agree well with the SINR dip results reported in the previous 

section, where we noted the dip only occurs when iVooF is greater than the dimension of the interference 

subspace and sample support size K is on the order of MN. 

From this analysis, we conclude the underlying cause of the SINR dip observed in Figs. 7 and 8 is 

insufficient secondary data support. We give further support for this conclusion in the next section through 

a discussion of diagonal loading. Diagonal loading the covariance matrix estimate reduces the eigenvalue 

spread in the noise subspace. As we show next, the introduction of diagonal loading mitigates the SINR 

performance drop. 

4.3    Diagonal Loading 

The effects of insufficient sample support, as illustrated by the scale factor plot of Fig. 13, can be allevi- 

ated through the technique of diagonal loading. This technique is equivalent to adding white noise to the 

covariance matrix, 

RDL = R + «
2
IMN- (24) 

The factor n2 is referred to as the diagonal load factor. The squaring is used primarily to emphasize its role 

as additive white noise. With this convention, K
2
 can be viewed as the variance or noise power added to the 
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Figure 13: Relationship of the scale factor in 
Eqn. (18) to sample support for eigenbeams occu- 
pying the noise subspace for the eigenbeam anal- 
ysis example. Plot based on a single realization of 
R. 

Figure 14: Relationship of the scale factor in 
Eqn. (18) to sample support for eigenbeams oc- 
cupying the noise subspace when using diagonal 
loading with K

2
 = 16. Plot based on a single real- 

ization of R. 

system. 

The technique of diagonal loading works because it reduces the eigenvalue spread. Examining the eigen- 

value decomposition of the covariance matrix shows how the technique directly impacts the eigenvalues. 

Begin by decomposing the covariance matrix estimate with an eigenvalue/eigenvector decomposition, 

R = UAUff. (25) 

Substitute this alternate expression for R into Eqn. (24) and take advantage of the unitary property of the 

eigenvector matrix, 

RDL    =    UAU
H

 + K
2
IMN 

=   UAUH + UK
2
IMNU

H 

=   U(A + «2IMN)U". (26) 

The above expression shows the diagonal load parameter directly adds to the eigenvalues and has no impact 

on the eigenvectors. Therefore, by using this technique, we can control the eigenvalue spread and hence 

control the impact of the noise subspace eigenbeams. 

Figure 14 shows the impact of diagonal loading on the scale factor with K
2
 = 16 for the same scenario 

and data realizations as in Fig. 13. The large diagonal load factor is possible because of the large separation 

between interference and noise eigenvalues in this example. The resulting drop in scale factor magnitude 

indicates the eigenbeams have much less impact on the overall antenna pattern. 
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There are significant trade-offs in the technique. Diagonal loading performs very well when there is a 

distinct noise subspace that is well separated from the interference subspace, such as the ones shown in 

Figs. 2, 4, and 9. In these cases, a large diagonal load can be used to decrease the eigenvalue spread in the 

noise subspace with little impact on the spread in the interference subspace (due to the large eigenvalues 

of the interference subspace as compared to the noise subspace). However, a gradual transition between 

the subspaces means K
2
 is significant when compared to eigenvalues of the interference subspace. Any 

diagonal loading can negatively impact the desired pattern features by modifying the contributions from the 

interference eigenbeams. 

Figure 15 shows the impact of diagonal loading the covariance matrix estimate with K
2
 = 16 for scenario 

2. This figure is the diagonal loaded counterpart to Fig. 8. As we expected from the above analysis, the 

algorithm's performance is significantly improved. The drop in SINR performance evident with no diagonal 

loading has been eliminated. Furthermore, the overall SINR performance of the fully adaptive case is 

improved for small values of K. The results are dramatic because of the choice of scenario (very distinct 

difference between interference and noise subspaces). 

A third scenario was created to further explore the impact of diagonal loading on the CSM algorithm. 

We previously hypothesized the diagonal loading technique would break down when the noise subspace was 

no longer distinctly separated from the interference subspace. This scenario creates this condition through 

the introduction of a 7deg crab angle. This step alone was insufficient to obtain the desired eigenstructure, 

therefore a total of 6 jammers were also included. Figure 16 shows the scenario structure in terms of the 

eigenvalues and CSM. Table 3 shows the parameters used to build the covariance matrix using the physical 

model. 

The impact of diagonal loading this covariance scenario is shown in Fig. 17. The first point of interest is 

the absence of the dip corresponding to the space-time product exhibited by the earlier plots. As surmised 

earlier and now shown by example, the dip is an artifact of estimation in the noise subspace with insufficient 

sample support. When the noise subspace is mitigated, the dip disappears. Optimum SINR only reached 

8.16 dB due to the large number of jammers in the scenario. The poor SINR performance of the reduced 

dimension curves is due to the large interference subspace, more DOF are required to mitigate the interference 

environment. 

The second point to be made with these plots is the loss in SINR due to the diagonal loading. The 

diagonal loading does show a significant improvement in SINR when iVnoF is equal to the fully adaptive 

case for small secondary data support near the space-time product. However, as secondary data support 

increases there is a small loss in SINR due to the diagonal loading as K increases. The diagonal load gives 

improvement for K near the space-time product of MN.   This occurs because the diagonal load is now 

17 



masking important features of the scenario instead of just noise. This fact is very difficult to ascertain from 

this figure. The loss is noticeable when K = 95 and JVDOF = MN. A larger K
2
 value would have exaggerated 

this SINR loss. 
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2
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spread has been minimized due to the scenario parameters. 
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5.0    CONCLUSIONS 

The eigenvalue/eigenvector decomposition of the estimated disturbance covariance matrix Rb in the CSM 

algorithm brought into question the validity of Reed's rule regarding the required sample support. A Monte 

Carlo analysis was performed to demonstrate, first, that Reed's rule does hold when the CSM algorithm is 

fully adaptive and, second, the rule does not hold when ATDOF < MN (the partially adaptive case). This 

conclusion follows intuition because the fully adaptive CSM algorithm is equivalent to the fully adaptive 

SMI algorithm. 

The performance of the CSM algorithm with estimated covariance is maximized when JVDOF is chosen 

equal to the interference subspace dimension. This result follows expectations because it amounts to choosing 

all of the principle cross spectral components. Furthermore, the experimental SINR performance of the 

algorithms as ATDOF approaches MN showed the expected convergence to the fully adaptive case. However, 

an unexpected result was the susceptibility of this algorithm to poor estimation in the noise subspace. This 

weakness was manifested in the large SINR dip occurring at sample support sizes near the space-time product 

MN. 

In an effort to determine the cause of the SINR dip, an exploration of the eigenbeam model [2-4] was 

presented. The CSM algorithm was shown mathematically to contain many of the characteristics of the 

eigenbeam model. One of the most important characteristics is the impact of eigenvalue spread in the noise 

subspace. In particular, the direct relationship between eigenvalue spread and sample support was shown to 

perturb the overall weight vector. 

Of the scenarios chosen for the analysis, the first two illustrated a severe drop in SINR occurring at 

secondary data support sizes equal to the space-time product MN. The third scenario did not exhibit the 

drop because the interference subspace was purposely forced to consume the entire subspace structure of the 

covariance matrix, thereby increasing the value of Xmi„ and decreasing eigenvalue spread. In this situation, 

the overall antenna pattern does not experience significant degradation because the eigenvalue spread is 

mitigated through the scenario itself. 

Diagonal loading was used to eliminate the SINR performance drop for the first two scenarios. The 

trade-offs of diagonal loading for different scenario types were briefly explored. In particular, it was shown 

that diagonal loading is not a cure all technique. The choice of the diagonal load factor is scenario dependent 

and crucial to avoid impacting the desired portions of the antenna pattern. Diagonal loading does represent 

a powerful tool that can be used to gain significant improvement in SINR performance. 
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Parameter 

Elements (M) 
Pulses (JV) 
Normalized Element Spacing 
Mainbeam Transmit Az 
Peak Transmit Power 
Uncompressed Pulse Duration 
Pulse Repetition Frequency- 
Carrier Frequency 
Receiver Bandwidth 
Transmit Pattern Gain 
Receive Pattern Gain 
Receive Element Backlobe Attenuation 
System Noise Figure 
System Loss 
Thermal Noise Power 
Transmit Array Pattern 
Platform Altitude 
Platform Velocity 
Range to Clutter Ring 
Number of Clutter Ring Patches 
Platform Crab Angle 
Target Radial Velocity 
Target Normalized Doppler (Qt) 
Target Azimuth (6t) 
Target Elevation 
Number of Jammers 
Jammer Azimuths 
Jammer Elevations 
Jammer Powers 
Jammer Ranges 
Jammer-to-Noise Ratios 

Value 

18 
18 
0.5 
0 deg 
200 kW 
200 ^sec 
300 Hz 
1240 MHz 
4 MHz 
22 dB 
10 dB 
30 dB 
10 dB 
4 dB 
1 W 
Uniform 
9 km 
50 m/s 
80 km 
361 
0 deg 
33.33 m/s 
0.5 
0 deg 
0 deg 
2 
[ -40   25 1 deg 
zeros(l,2) deg 
1000 * ones (2,1) W 

370   370 1 Trm 

' 27.79   29.25 ] dB 

Table 1: Parameters for scenario 1. The physical model was used to generate covariance matrices [11]. This 
scenario is the result of the author's implementation. 
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Parameter Value 

Elements (M) 8 
Pulses (JV) 4 
Normalized Element Spacing 0.5 
Mainbeam Transmit Az 0 deg 
Peak Transmit Power 200 kW 
Uncompressed Pulse Duration 200 //sec 
Pulse Repetition Frequency 300 Hz 
Carrier Frequency 450 MHz 
Receiver Bandwidth 4 MHz 
Transmit Pattern Gain 22 dB 
Receive Pattern Gain 10 dB 
Receive Element Backlobe Attenuation 30 dB 

System Noise Figure 10 dB 

System Loss 4 dB 

Thermal Noise Power 1 W 

Transmit Array Pattern Uniform 
Platform Altitude 9 km 

Platform Velocity 50 m/s 
Range to Clutter Ring 130 km 
Number of Clutter Ring Patches 361 
Platform Crab Angle 0 deg 
Target Radial Velocity 33.33 m/s 
Target Normalized Doppier (ü>t) 0.5 
Target Azimuth (6t) 0 deg 
Target Elevation 0 deg 
Number of Jammers 0 
Jammer Azimuths NA deg 
Jammer Elevations NA deg 
Jammer Powers NA W 

Table 2: Parameters for scenario 2. The physical model was used to generate covariance matrices [11]. The 
covariance matrix was generated using the Multi-Channel Signal Processing System (MCSPS) developed by 
AFRL/SNRT. 
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Parameter Value 

Elements (M) 8 
Pulses (N) 4 
Normalized Element Spacing 0.5 
Mainbeam Transmit Az 0 deg 
Peak Transmit Power 400 kW 
Uncompressed Pulse Duration 400 fisec 

Pulse Repetition Frequency 600 Hz 
Carrier Frequency 450 MHz 
Receiver Bandwidth 4 MHz 
Transmit Pattern Gain 22 dB 
Receive Pattern Gain 10 dB 
Receive Element Backlobe Attenuation 30 dB 
System Noise Figure 10 dB 
System Loss 4 dB 
Thermal Noise Power 1 W 
Transmit Array Pattern Uniform 
Platform Altitude 9 km 
Platform Velocity 50 m/s 
Range to Clutter Ring 80 km 
Number of Clutter Ring Patches 361 
Platform Crab Angle 7 deg 
Target Radial Velocity 33.33 m/s 
Target Normalized Doppier (Qt) 0.33 
Target Azimuth (6t) 0 deg 
Target Elevation 0 deg 
Number of Jammers 6 
Jammer Azimuths [ -25   40    -10    -65   65   25          deg 
Jammer Elevations zeros(l,6) deg 
Jammer Powers 1000 * ones(6,1) W 

Table 3: Parameters for scenario 3. The physical model was used to generate covariance matrices [11]. This 
covariance matrix was generated using the Multi-Channel Signal Processing System (MCSPS) developed by 
AFRL/SNRT. 
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